Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Objectives. Physical computing systems are increasingly being integrated into secondary school science and STEM instruction, yet little is known about how teachers, especially those with little background and experience in computing, help students during the inevitable debugging moments that arise. In this article, we describe a framework, comprising two dimensions, for characterizing how teachers support students as they debug a physical computing system called the Data Sensor Hub (DASH). The DASH enables students to program sensors to measure, analyze, and visualize data as they engage in science inquiry activities. Participants. Five secondary school teachers implemented an inquiry-oriented instructional unit designed to introduce students to working with the DASH as a tool for scientific inquiry. Study Method. Findings drew on video analysis of the teachers’ classroom implementations of the unit. A review of the data corpus led to the selection of 23 moments where the teachers supported an individual or small groups of students engaged in debugging. These moments were analyzed using a grounded perspective based on Interaction Analysis to characterize the teachers’ varied interactional approaches. Findings. Our analysis revealed how teachers’ moves during debugging moments fell along two dimensions. The first dimension characterizes teachers’ positioning during the debugging interactions, ranging from a positioning for teacher understanding to a positioning for student understanding of the bug. The second dimension characterizes the inquiry orientation of the teachers’ questions and guidance, ranging from focusing on the debugging process to focusing on the product—or fixing the bug. Further, teachers’ moves often fell along different points on these dimensions given nuances in the instructional context. Conclusions. The framework offers a first step toward characterizing teachers’ debugging pedagogy as they support students during debugging moments. It also calls attention to how teachers do not necessarily need to be programming experts to effectively help students learn independent and generalizable debugging strategies. Further, it illustrates the variety of expertise that teachers can bring to debugging moments to support students learning to debug. Finally, the framework provides implications for the design of professional learning and supports for teachers as they increasingly are asked to support students in computing—and debugging—activities across a range of disciplines.more » « lessFree, publicly-accessible full text available December 31, 2025
-
Clarke_Midura, J; Kollar, I; Gu, X; D’Angelo, C (Ed.)TalkMoves is an AI assistive tool that provides automated feedback to educators to support their daily teaching practices. While originally designed for classroom math teachers, this tool can be useful in a broader context. The University of Colorado Boulder and Saga Education formed a co-design team tasked with re-contextualizing TalkMoves for coaches of novice math tutors to use in their ongoing professional development. To effectively adapt an existing technology to a new problem space, the co-design team iteratively exchanged ideas of what exactly TalkMoves could achieve, as well as the specific needs of the coaches. Facilitators used strategies such as communal orientation, expansive dreaming, backcasting, and revoicing to promote productive collaboration. Three main goals emerged: maximize opportunities for user agency, center design around goal setting, and integrate the tool into the existing workflow. Any adaptation of an AI tool would benefit from this approach.more » « less
-
This paper compares student outcomes from 75 K-12 teachers who participated in either online, blended, or face-to-face professional development design to support teacher implementation of a programming curriculum during the regular school day. The results are based on survey responses collected over two years from 4,832 students. With only one exception, the results showed no negative student outcomes when comparing student survey results from teachers who participated in online professional development compared to students of teachers who participated in face-to-face professional development. Students who had teachers who participated in face-to-face professional development, however, expressed stronger interest in designing their own games at home. These results suggest that online professional development that is designed to support K-12 teacher classroom implementation of CS education curricula is a viable model with respect to student outcomes. Recommendations for the design of online curricula for CS education are discussed.more » « less
An official website of the United States government

Full Text Available